Source code for aicssegmentation.structure_wrapper.seg_st6gal1

import numpy as np
from typing import Union
from pathlib import Path
from skimage.morphology import remove_small_objects, ball, dilation
from aicssegmentation.core.pre_processing_utils import (
    intensity_normalization,
    image_smoothing_gaussian_3d,
)
from aicssegmentation.core.seg_dot import dot_3d
from skimage.measure import label
from skimage.filters import threshold_triangle, threshold_otsu
from aicssegmentation.core.utils import topology_preserving_thinning
from aicssegmentation.core.output_utils import (
    save_segmentation,
    generate_segmentation_contour,
)
from scipy.ndimage import zoom


[docs]def Workflow_st6gal1( struct_img: np.ndarray, rescale_ratio: float = -1, output_type: str = "default", output_path: Union[str, Path] = None, fn: Union[str, Path] = None, output_func=None, ): """ classic segmentation workflow wrapper for structure ST6GAL1 Parameter: ----------- struct_img: np.ndarray the 3D image to be segmented rescale_ratio: float an optional parameter to allow rescale the image before running the segmentation functions, default is no rescaling output_type: str select how to handle output. Currently, four types are supported: 1. default: the result will be saved at output_path whose filename is original name without extention + "_struct_segmentaiton.tiff" 2. array: the segmentation result will be simply returned as a numpy array 3. array_with_contour: segmentation result will be returned together with the contour of the segmentation 4. customize: pass in an extra output_func to do a special save. All the intermediate results, names of these results, the output_path, and the original filename (without extension) will be passed in to output_func. """ ########################################################################## # PARAMETERS: # note that these parameters are supposed to be fixed for the structure # and work well accross different datasets intensity_norm_param = [9, 19] gaussian_smoothing_sigma = 1 gaussian_smoothing_truncate_range = 3.0 cell_wise_min_area = 1200 dot_3d_sigma = 1.6 dot_3d_cutoff = 0.02 minArea = 10 thin_dist = 1 thin_dist_preserve = 1.6 ########################################################################## out_img_list = [] out_name_list = [] ################### # PRE_PROCESSING ################### # intenisty normalization (min/max) struct_img = intensity_normalization(struct_img, scaling_param=intensity_norm_param) out_img_list.append(struct_img.copy()) out_name_list.append("im_norm") # rescale if needed if rescale_ratio > 0: struct_img = zoom(struct_img, (1, rescale_ratio, rescale_ratio), order=2) struct_img = (struct_img - struct_img.min() + 1e-8) / (struct_img.max() - struct_img.min() + 1e-8) gaussian_smoothing_truncate_range = gaussian_smoothing_truncate_range * rescale_ratio # smoothing with gaussian filter structure_img_smooth = image_smoothing_gaussian_3d( struct_img, sigma=gaussian_smoothing_sigma, truncate_range=gaussian_smoothing_truncate_range, ) out_img_list.append(structure_img_smooth.copy()) out_name_list.append("im_smooth") ################### # core algorithm ################### # cell-wise local adaptive thresholding th_low_level = threshold_triangle(structure_img_smooth) bw_low_level = structure_img_smooth > th_low_level bw_low_level = remove_small_objects(bw_low_level, min_size=cell_wise_min_area, connectivity=1) bw_low_level = dilation(bw_low_level, footprint=ball(2)) bw_high_level = np.zeros_like(bw_low_level) lab_low, num_obj = label(bw_low_level, return_num=True, connectivity=1) for idx in range(num_obj): single_obj = lab_low == (idx + 1) local_otsu = threshold_otsu(structure_img_smooth[single_obj > 0]) bw_high_level[np.logical_and(structure_img_smooth > local_otsu * 0.98, single_obj)] = 1 # LOG 3d to capture spots response = dot_3d(structure_img_smooth, log_sigma=dot_3d_sigma) bw_extra = response > dot_3d_cutoff # thinning bw_high_level = topology_preserving_thinning(bw_high_level, thin_dist_preserve, thin_dist) # combine the two parts bw = np.logical_or(bw_high_level, bw_extra) ################### # POST-PROCESSING ################### seg = remove_small_objects(bw > 0, min_size=minArea, connectivity=1) # output seg = seg > 0 seg = seg.astype(np.uint8) seg[seg > 0] = 255 out_img_list.append(seg.copy()) out_name_list.append("bw_final") if output_type == "default": # the default final output, simply save it to the output path save_segmentation(seg, False, Path(output_path), fn) elif output_type == "customize": # the hook for passing in a customized output function # use "out_img_list" and "out_name_list" in your hook to # customize your output functions output_func(out_img_list, out_name_list, Path(output_path), fn) elif output_type == "array": return seg elif output_type == "array_with_contour": return (seg, generate_segmentation_contour(seg)) else: raise NotImplementedError("invalid output type: {output_type}")