Source code for aicssegmentation.structure_wrapper.seg_dsp

import numpy as np
from typing import Union
from pathlib import Path
from skimage.morphology import remove_small_objects, dilation, ball
from skimage.segmentation import watershed

from aicssegmentation.core.pre_processing_utils import (
    intensity_normalization,
    image_smoothing_gaussian_slice_by_slice,
)
from aicssegmentation.core.seg_dot import dot_3d
from aicssegmentation.core.utils import peak_local_max_wrapper

from scipy.ndimage import distance_transform_edt
from skimage.measure import label
from aicssegmentation.core.output_utils import (
    save_segmentation,
    generate_segmentation_contour,
)
from scipy.ndimage import zoom


[docs]def Workflow_dsp( struct_img: np.ndarray, rescale_ratio: float = -1, output_type: str = "default", output_path: Union[str, Path] = None, fn: Union[str, Path] = None, output_func=None, ): """ classic segmentation workflow wrapper for structure DSP Parameter: ----------- struct_img: np.ndarray the 3D image to be segmented rescale_ratio: float an optional parameter to allow rescale the image before running the segmentation functions, default is no rescaling output_type: str select how to handle output. Currently, four types are supported: 1. default: the result will be saved at output_path whose filename is original name without extention + "_struct_segmentaiton.tiff" 2. array: the segmentation result will be simply returned as a numpy array 3. array_with_contour: segmentation result will be returned together with the contour of the segmentation 4. customize: pass in an extra output_func to do a special save. All the intermediate results, names of these results, the output_path, and the original filename (without extension) will be passed in to output_func. """ ########################################################################## # PARAMETERS: # note that these parameters are supposed to be fixed for the structure # and work well accross different datasets intensity_norm_param = [8000] gaussian_smoothing_sigma = 1 gaussian_smoothing_truncate_range = 3.0 dot_3d_sigma = 1 dot_3d_cutoff = 0.012 minArea = 4 ########################################################################## out_img_list = [] out_name_list = [] ################### # PRE_PROCESSING ################### # intenisty normalization (min/max) struct_img = intensity_normalization(struct_img, scaling_param=intensity_norm_param) out_img_list.append(struct_img.copy()) out_name_list.append("im_norm") # rescale if needed if rescale_ratio > 0: struct_img = zoom(struct_img, (1, rescale_ratio, rescale_ratio), order=2) struct_img = (struct_img - struct_img.min() + 1e-8) / (struct_img.max() - struct_img.min() + 1e-8) gaussian_smoothing_truncate_range = gaussian_smoothing_truncate_range * rescale_ratio # smoothing with gaussian filter structure_img_smooth = image_smoothing_gaussian_slice_by_slice( struct_img, sigma=gaussian_smoothing_sigma, truncate_range=gaussian_smoothing_truncate_range, ) out_img_list.append(structure_img_smooth.copy()) out_name_list.append("im_smooth") ################### # core algorithm ################### # step 1: LOG 3d response = dot_3d(structure_img_smooth, log_sigma=dot_3d_sigma) bw = response > dot_3d_cutoff bw = remove_small_objects(bw > 0, min_size=minArea, connectivity=1) out_img_list.append(bw.copy()) out_name_list.append("interm_mask") # step 2: 'local_maxi + watershed' for cell cutting local_maxi = peak_local_max_wrapper(struct_img, bw) out_img_list.append(local_maxi.copy()) out_name_list.append("interm_local_max") distance = distance_transform_edt(bw) im_watershed = watershed( -distance, label(dilation(local_maxi, footprint=ball(1))), mask=bw, watershed_line=True, ) ################### # POST-PROCESSING ################### seg = remove_small_objects(im_watershed, min_size=minArea, connectivity=1) # output seg = seg > 0 seg = seg.astype(np.uint8) seg[seg > 0] = 255 out_img_list.append(seg.copy()) out_name_list.append("bw_final") if output_type == "default": # the default final output, simply save it to the output path save_segmentation(seg, False, Path(output_path), fn) elif output_type == "customize": # the hook for passing in a customized output function # use "out_img_list" and "out_name_list" in your hook to # customize your output functions output_func(out_img_list, out_name_list, Path(output_path), fn) elif output_type == "array": return seg elif output_type == "array_with_contour": return (seg, generate_segmentation_contour(seg)) else: raise NotImplementedError("invalid output type: {output_type}")