Source code for aicssegmentation.structure_wrapper.seg_cardio_fbl

import numpy as np
from typing import Union
from pathlib import Path
from skimage.morphology import remove_small_objects
from aicssegmentation.core.pre_processing_utils import (
    intensity_normalization,
    image_smoothing_gaussian_3d,
)
from aicssegmentation.core.seg_dot import dot_slice_by_slice
from skimage.filters import threshold_triangle, threshold_otsu
from skimage.measure import label
from aicssegmentation.core.output_utils import (
    save_segmentation,
    generate_segmentation_contour,
)
from scipy.ndimage import zoom


[docs]def Workflow_cardio_fbl( struct_img: np.ndarray, rescale_ratio: float = -1, output_type: str = "default", output_path: Union[str, Path] = None, fn: Union[str, Path] = None, output_func=None, ): """ classic segmentation workflow wrapper for structure Cardio FBL Parameter: ----------- struct_img: np.ndarray the 3D image to be segmented rescale_ratio: float an optional parameter to allow rescale the image before running the segmentation functions, default is no rescaling output_type: str select how to handle output. Currently, four types are supported: 1. default: the result will be saved at output_path whose filename is original name without extention + "_struct_segmentaiton.tiff" 2. array: the segmentation result will be simply returned as a numpy array 3. array_with_contour: segmentation result will be returned together with the contour of the segmentation 4. customize: pass in an extra output_func to do a special save. All the intermediate results, names of these results, the output_path, and the original filename (without extension) will be passed in to output_func. """ ########################################################################## # PARAMETERS: # note that these parameters are supposed to be fixed for the structure # and work well accross different datasets intensity_norm_param = [0.5, 140] gaussian_smoothing_sigma = 1 gaussian_smoothing_truncate_range = 3.0 dot_2d_sigma = 1 dot_2d_cutoff = 0.015 minArea = 1 low_level_min_size = 1000 ########################################################################## out_img_list = [] out_name_list = [] ################### # PRE_PROCESSING ################### # intenisty normalization (min/max) struct_img = intensity_normalization(struct_img, scaling_param=intensity_norm_param) out_img_list.append(struct_img.copy()) out_name_list.append("im_norm") # rescale if needed if rescale_ratio > 0: struct_img = zoom(struct_img, (1, rescale_ratio, rescale_ratio), order=2) struct_img = (struct_img - struct_img.min() + 1e-8) / (struct_img.max() - struct_img.min() + 1e-8) gaussian_smoothing_truncate_range = gaussian_smoothing_truncate_range * rescale_ratio # smoothing with gaussian filter structure_img_smooth = image_smoothing_gaussian_3d( struct_img, sigma=gaussian_smoothing_sigma, truncate_range=gaussian_smoothing_truncate_range, ) out_img_list.append(structure_img_smooth.copy()) out_name_list.append("im_smooth") ################### # core algorithm ################### # step 1: low level thresholding # global_otsu = threshold_otsu(structure_img_smooth) global_tri = threshold_triangle(structure_img_smooth) global_median = np.percentile(structure_img_smooth, 50) th_low_level = (global_tri + global_median) / 2 bw_low_level = structure_img_smooth > th_low_level bw_low_level = remove_small_objects(bw_low_level, min_size=low_level_min_size, connectivity=1, out=bw_low_level) # step 2: high level thresholding local_cutoff = 0.333 * threshold_otsu(structure_img_smooth) bw_high_level = np.zeros_like(bw_low_level) lab_low, num_obj = label(bw_low_level, return_num=True, connectivity=1) for idx in range(num_obj): single_obj = lab_low == (idx + 1) local_otsu = threshold_otsu(structure_img_smooth[single_obj]) if local_otsu > local_cutoff: bw_high_level[np.logical_and(structure_img_smooth > local_otsu, single_obj)] = 1 out_img_list.append(bw_high_level.copy()) out_name_list.append("interm_high") # step 3: finer segmentation response2d = dot_slice_by_slice(structure_img_smooth, log_sigma=dot_2d_sigma) bw_finer = remove_small_objects(response2d > dot_2d_cutoff, min_size=minArea, connectivity=1) out_img_list.append(bw_finer.copy()) out_name_list.append("bw_fine") # merge finer level detection into high level coarse segmentation to include # outside dim parts bw_high_level[bw_finer > 0] = 1 ################### # POST-PROCESSING ################### seg = remove_small_objects(bw_high_level > 0, min_size=minArea, connectivity=1) # output seg = seg > 0 seg = seg.astype(np.uint8) seg[seg > 0] = 255 out_img_list.append(seg.copy()) out_name_list.append("bw_coarse") if output_type == "default": # the default final output, simply save it to the output path save_segmentation(seg, False, Path(output_path), fn) elif output_type == "customize": # the hook for passing in a customized output function # use "out_img_list" and "out_name_list" in your hook to # customize your output functions output_func(out_img_list, out_name_list, Path(output_path), fn) elif output_type == "array": return seg elif output_type == "array_with_contour": return (seg, generate_segmentation_contour(seg)) else: raise NotImplementedError("invalid output type: {output_type}")