Source code for aicssegmentation.structure_wrapper.seg_PCNA_earlyS_midS

import numpy as np
from typing import Union
from pathlib import Path

from aicssegmentation.core.vessel import vesselness3D
from aicssegmentation.core.seg_dot import dot_3d
from aicssegmentation.core.pre_processing_utils import (
    intensity_normalization,
    edge_preserving_smoothing_3d,
)
from skimage.morphology import remove_small_objects
from aicssegmentation.core.output_utils import (
    save_segmentation,
    generate_segmentation_contour,
)

from skimage.filters import threshold_otsu


[docs]def Workflow_PCNA_earlyS_midS( struct_img: np.ndarray, rescale_ratio: float = -1, output_type: str = "default", output_path: Union[str, Path] = None, fn: Union[str, Path] = None, output_func=None, ): """ classic segmentation workflow wrapper for structure pcna Parameter: ----------- struct_img: np.ndarray the 3D image to be segmented rescale_ratio: float an optional parameter to allow rescale the image before running the segmentation functions, default is no rescaling output_type: str select how to handle output. Currently, four types are supported: 1. default: the result will be saved at output_path whose filename is original name without extention + "_struct_segmentaiton.tiff" 2. array: the segmentation result will be simply returned as a numpy array 3. array_with_contour: segmentation result will be returned together with the contour of the segmentation 4. customize: pass in an extra output_func to do a special save. All the intermediate results, names of these results, the output_path, and the original filename (without extension) will be passed in to output_func. """ ########################################################################## # PARAMETERS: # note that these parameters are supposed to be fixed for the structure # and work well accross different datasets ########################################################################## intensity_norm_param = [0.5, 10] intensity_norm_param_otsu = [0.5, 15] scaling_factor = 1.0 vesselness_sigma = [1.0] vesselness_cutoff = 0.0125 minArea = 20 dot_3d_sigma = 1.0 ########################################################################## out_img_list = [] out_name_list = [] ################### # PRE_PROCESSING ################### # intenisty normalization (min/max) struct_img = intensity_normalization(struct_img, scaling_param=intensity_norm_param) struct_img_otsu = intensity_normalization(struct_img, scaling_param=intensity_norm_param_otsu) out_img_list.append(struct_img.copy()) out_name_list.append("im_norm") # smoothing with boundary preserving smoothing structure_img_smooth = edge_preserving_smoothing_3d(struct_img) structure_img_smooth_otsu = edge_preserving_smoothing_3d(struct_img_otsu) out_img_list.append(structure_img_smooth.copy()) out_name_list.append("im_smooth") out_img_list.append(structure_img_smooth_otsu.copy()) out_name_list.append("im_smooth_otsu") ################### # core algorithm ################### otsu_thresh = threshold_otsu(structure_img_smooth_otsu) global_thresh = otsu_thresh * scaling_factor bw_otsu_mask = structure_img_smooth_otsu > global_thresh response_f3 = vesselness3D(structure_img_smooth, sigmas=vesselness_sigma, tau=1, whiteonblack=True) response_f3 = response_f3 > vesselness_cutoff response_s3_1 = dot_3d(structure_img_smooth, log_sigma=dot_3d_sigma) response_s3_3 = dot_3d(structure_img_smooth, log_sigma=3) bw_small_inverse = remove_small_objects(response_s3_1 > 0.035, min_size=150) bw_small = np.logical_xor(bw_small_inverse, response_s3_1 > 0.025) bw_medium = np.logical_or(bw_small, response_s3_1 > 0.07) bw_large = np.logical_or(response_s3_3 > 0.2, response_f3 > 0.25) bw_dots = np.logical_or(np.logical_or(bw_small, bw_medium), bw_large) bw = np.logical_and(bw_dots, bw_otsu_mask) ################### # POST-PROCESSING ################### bw = remove_small_objects(bw > 0, min_size=minArea, connectivity=1, in_place=False) for zz in range(bw.shape[0]): bw[zz, :, :] = remove_small_objects(bw[zz, :, :], min_size=3, connectivity=1, in_place=False) seg = remove_small_objects(bw > 0, min_size=minArea, connectivity=1, in_place=False) from aicssegmentation.core.utils import remove_hot_pixel seg = seg > 0 seg_clean = remove_hot_pixel(seg) seg = seg_clean.astype(np.uint8) seg[seg > 0] = 255 out_img_list.append(seg.copy()) out_name_list.append("bw_final") if output_type == "default": # the default final output, simply save it to the output path save_segmentation(seg, False, Path(output_path), fn) elif output_type == "customize": # the hook for passing in a customized output function # use "out_img_list" and "out_name_list" in your hook to # customize your output functions output_func(out_img_list, out_name_list, Path(output_path), fn) elif output_type == "array": return seg elif output_type == "array_with_contour": return (seg, generate_segmentation_contour(seg)) else: raise NotImplementedError("invalid output type: {output_type}")