Source code for aicscytoparam.alignment.generic_2d_shape

import numpy as np
import matplotlib.pyplot as plt
from scipy import spatial as spspatial
from skimage import transform as sktrans
from skimage import measure as skmeasure


[docs] class Generic2DShape: """ Generic class for 2D shapes """ def __init__(): pass def _compute_contour(self): """ Compute the contour of the shape """ cont = skmeasure.find_contours(self._polygon)[0] cx, cy = cont[:, 1], cont[:, 0] self.cx = cx - cx.mean() self.cy = cy - cy.mean() return
[docs] def show(self, ax=None): if ax is None: fig, ax = plt.subplots() ax.plot(self.cx, self.cy) if ax is None: plt.show()
[docs] def find_angle_that_minimizes_countour_distance(self, cx, cy): """ Find the angle that minimizes the distance between the shape and the contour (cx, cy) Parameters ---------- cx: np.ndarray x coordinates of the contour cy: np.ndarray y coordinates of the contour Returns ------- angle: int angle that minimizes the distance dist: float minimum distance """ # Assumes cx and cy are centered at origin dists = [] for theta in range(180): cx2rot, cy2rot = Generic2DShape.rotate_contour(cx, cy, theta) X = np.c_[self.cx, self.cy] Y = np.c_[cx2rot, cy2rot] D = spspatial.distance.cdist(X, Y) dist_min = D.min(axis=0).mean() + D.min(axis=1).mean() dists.append(dist_min) return np.argmin(dists), np.min(dists)
[docs] @staticmethod def rotate_contour(cx, cy, theta): """ Rotate a contour around the origin Parameters ---------- cx: np.ndarray x coordinates of the contour cy: np.ndarray y coordinates of the contour theta: float angle of rotation Returns ------- cxrot: np.ndarray x coordinates of the rotated contour cyrot: np.ndarray y coordinates of the rotated contour """ cxrot = cx * np.cos(np.deg2rad(theta)) - cy * np.sin(np.deg2rad(theta)) cyrot = cx * np.sin(np.deg2rad(theta)) + cy * np.cos(np.deg2rad(theta)) return cxrot, cyrot
[docs] @staticmethod def get_contour_from_3d_image(image, pad=5, center=True): """ Get the contour of a 3D image Parameters ---------- image: np.ndarray 3D image pad: int padding center: bool center the contour Returns ------- cx: np.ndarray x coordinates of the contour cy: np.ndarray y coordinates of the contour """ mip = image.max(axis=0) y, x = np.where(mip > 0) mip = np.pad(mip, ((pad, pad), (pad, pad))) cont = skmeasure.find_contours(mip > 0)[0] cx, cy = cont[:, 1], cont[:, 0] if center: cx = cx - cx.mean() cy = cy - cy.mean() return (cx, cy)
[docs] class ElongatedHexagonalShape(Generic2DShape): """ Elongated hexagonal shape """ def __init__(self, base, elongation, pad=5): self._pad = pad self._base = base self._height = int(self._base / np.sqrt(2)) self._elongation_factor = elongation self._create() self._compute_contour() def _create(self): """ Create the elongated hexagonal shape """ pad = self._pad triangle = np.tril(np.ones((self._height, self._base))) triangle = sktrans.rotate(triangle, angle=-15, center=(0, 0), order=0) rectangle = np.ones((self._height, self._base)) for _ in range(self._elongation_factor): rectangle = np.concatenate([rectangle, rectangle[:, :1]], axis=1) upper_half = np.concatenate([triangle[:, ::-1], rectangle, triangle], axis=1) hexagon = np.concatenate([upper_half, upper_half[::-1]], axis=0) hexagon = np.pad(hexagon, ((pad, pad), (pad, pad))) self._polygon = hexagon return
[docs] @staticmethod def get_default_parameters_as_dict(elongation=8, base_ini=24, base_end=64): params = [] for wid, w in enumerate(np.linspace(base_ini, base_end, elongation)): for fid, f in enumerate(np.linspace(0, w, elongation)): params.append({"base": int(w), "elongation": int(f)}) return params